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MULTIGRID METHODS FOR DIFFERENTIAL

EQUATIONS WITH HIGHLY OSCILLATORY
COEFFICIENTS,

Bjorn Engquist Erding Luo

Dept. of Math., UCLA, CA 90024

SUMMARY

New coarse grid multigrid operators for problems with highly oscillatory coefficients are

developed. These types of operators are necessary when the characters of the differential

equations on coarser grids or longer wavelengths are different from that on the fine grid.

Elliptic problems for composite materials and different classes of hyperbolic problems are

practical examples.

The new coarse grid operators can be constructed directly based on the homogenized

differential operators or hierarchally computed from the finest grid. Convergence analysis

based on the homogenization theory is given for elliptic problems with periodic coefficients

and some hyperbolic problems. These are classes of equations for which there exists a

fairly complete theory for the interaction between shorter and longer wavelengths in the

problems. Numerical examples are presented.

INTRODUCTION

Multigrid methods are usually not so effective when applied to problems for which the

standard coarse grid operators have significantly different properties from those of the fine

grid operators [1,3,7-9,11-12]. In some of these problems the coarse grid operators should

be constructed based on other principles than just simple restriction from the finest grid.

Elliptic and parabolic equations with strongly variable coefficients and some hyperbolic

equations are such problems. One feature in these problems is that the smallest eigenvalues
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do not correspond to very smooth eigenfunctions. It is thus not easy to represent these

eigenfunctions of the coarser grids.

We shall investigate elliptic equations with highly oscillatory coefficients,

0 0 x)
_j --_xjaj(x)-_xjU¢(X ) = f(x), aZ(x ) ----aj(x,e

(l)

with aj(x,y) strictly positive, continuous and 1-periodic in y. This is one class of the

problems discussed above for which there exists a fairly complete analytic theory such that

a rigorous treatment is possible. This homogenization theory describes the dependence of

the lal'ge scale features in the solutions on the smaller scales in the coefficients [2,11]. We

shall consider model problems but there are also important practical applications of these

equations in the study of elasticity and heat conduction for composite materials.

In this paper we analyse the convergence of multigrid methods for equation (1) by

introducing new coarse grid operators, based on local or global homogenized forms of the

equation. We consider only two level multigrid methods. For full multigrid or with more

general coefficients the homogenized operator can be numerically calculated from the finer

grids based on local solution of the so called cell problem [2].

In a number of numerical tests we compare the convergence rate for different choices of

parameter and coarse grid operators applied to a two dimensional elliptic model problem.

The convergence rate is also analyzed theoretically for a one dimensional problem.

If, for example, the oscillatory coefficient is replaced by its average, the direct estimate

for multigrid convergence rate is not asymptotically better than just using the damped

Jacobi smoothing operator. The homogenized coefficient reduces the number of smoothing

operations from O(h -2) to O( h-l°/r log h ). When h/e belongs to the set of Diophantine

numbers [4], ergodic mixing improves the estimate to O(h -6Is log h). The step size is h and

the wave length in the oscillating coefficient e.

These results carry over to some but not all hyperbolic problems. A numerical study

of using hyperbolic time stepping with multigrid inorder to compute a steady state gives

similar results to the elliptic case.

TWO DIMENSIONAL ELLIPTIC PROBLEMS

Elliptic problems on the form (1) will be considered,

-- V .ae(x,y)Vue = f(x,y), (x,y) e a = [0,1] x [0,11, (2)

subject to Dirichlet boundary condition U_lon = O. The function a_(x,y) = a(x/e,y/e) is
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strictly positive and 1-periodicin x and Y. From homogenization theory [2] follows,

max ]ue -- ul ---* O, as e ----_O.

where u satisfies the following effective equation,

O_u 02u A 02u
- All_x 2 - (A12 + A21)OyOx 22-_y2 = f(x,y), (z,y) e _,

subject to the same boundary condition. Here,

O_J)dsld%, i,j = 1,2,
Osi

I"

Aij = j a(sl,%)(6ij

and the periodic functions _j are given by,

-Vs" a(sl,s2)Vs_j = 0sj , j = 1,2.

(3)

For the numerical examples we shall choose a special case with diagonal oscillatory coeffi-

cient,

a_(x, y)= _(5__). (4)

From (3), we know that the corresponding homogenized equation is,

(# + _) 02u O_u (# + a) 02u _ f(x,y), (5)
2 02x + (# - a)OxOy 2 02y

where # = m(1/aO-' and a = re(a<). Here, the mean value re(f) of a e-periodic function

is defined as,

1 f(x)dx.
m(f) = e

For convenience, we introduce a brief notation of a N x N block tridiagonal matrix T,

TI, T12

23

TNN-1 TNN

T = Tridiag[Ti_l, Ti, Ti+ll(NxN ) =
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Numerical Algorithm

The discretization of (2) combined with (4) is

- D_ ahj D: u}j - DY+bhjD_ uhj = fh. (6)

whereab =a_(xi,_ --ih _yj), bh.=a_(xi--yj+-_),,, i,j=O,...,N. D+ andD_ areforward
1 denotes the grid size. Using vectorand backward divided differences, respectively; h =

notation, we can rewrite (6) as

L ,h G,h = G,h

where
1

L¢,h = fi Tridiag[B h_ 1' Ah, Bjh](N-1)x(N-l) (7)

Ah = Tridiag[-ah u'ah-lJ + ah + bh + bh ha - ij-l' --aij](N-1)x(N-1)

B h is a diagonial matrix, denoted by B h = Diag[--bhj](N_l)x(N_l) and
3 3

, ""., "'',UN_IN_ 1)UG h (Uhl, U2hl ' h h /t2hN_ 1 h T" " " ?J'N-11 _ _IN-I'

h
= .... , - • •, f_r_lN_l)re,h (fhl, fhl, " ., f_r_ll ' ,fhlN_l,fhN_ 1 h T

For simplicity, we only consider the two-grld method. Denote the full iteration operator of

this method by M. It is defined by,

M = S'r(I h -1 H "1-- I_,L H I_ L,,h)S , (8)

where the restriction and interpolation operators are given, as denoted below, by the weight-

ing restriction and bilinear interpolation operators, respectively,

11121[I I1 1 2 ] h

I_'=_-_ 2 4 2 , I_=_ 2 4 2 .
1 2 1 h 1 2 1 H

The smoothing iteration operator S is based on the damped Jacobi iteration,

S = I-wh2L,,h . (9)

The coarse grid operators L H is one of the following operators:
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Global Homogenized operator." which is the discretized form of (5)

-0.5(tL + a)D_+D_uij + (# - a)DoD_uij - 0.5(# + gt)Du+D[uij = fij.

Written in matrix form,

1

L H = -_Tridiag[BH_I,AH, BjH]@_I)×(__I),
(lO)

where

A H = Tridiag[ # + _ + a, 2 ' + a), 2

a -- _ _ "-1- a a -- _](___I)x(N_I) "/3( I Tridiag[
J 4 ' 2 ' 4

Local Homogenized operator: L H has the same form as (10), except the entries for A_ r, BH3

coming from the local discretized values of a¢(x - y),

1

Lu = -_ Tridiag[Bj_l, AH, BjH](-__l)x(-_-l),
(11)

where

with

AH_ = Tridiag[--aHlj,aHlj + a g,, + bHij-, + bHij' --aH]' N--')X @--1)',J_' 7

BU =, Tridiag[-ciH_,,-bH, j, ciH] (_ -1)x (q-l) '

b h, qL bhj_ 1 q- 2(_(bhj,bh_l ) ah.. q- ah 1 -1- 2_(ahj, aLlj) [z --
bH. = ,3 a H= 'J cH=-
': 4 ' 'J 4 ' ' 2

5(Cl,C2) is defined to be
Cl -t- c2 "

Reduced Local Homogenized operator: L H has the same form as in (11), except here we ig-

nore the cross term D O_D 0.y That means BH_ is a diagonM matrix, BH: = Diag[-bH]@_l)×(___l),

1
= [j_I,A_,B_]@_,)x(_}_I)LH -i_Tridiag B H

(12)

Sampling operator: L_, H has the exact form as Le,h, but values aij , b0 are defined on the

coarse grids,

LH = L_,H (13)
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Variational operator:

L H = IhHL¢,h Ih (14)

Numerical Results

In practice, it is not always easy to calculate the spectral radius p(M). Therefore, we

study the mean rate [14] of convergence under different coarse grid operators L H. The

mean rate of convergence is defined by

p = ( IIL ,hu - hlth (15)

where i is the smallest integer satisfying []L,,hu _ - fhIIh <-- 1 X 10 -6.

In Figure 1, a_(x-y) = 2.1 + 2sin(2:r(x-y)/¢). We plot p defined by (15) as a function

of 3' by taking e = v_h, and w in (9) is 0.095.
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Figure 1: p as a function of 3'. Dotted line is for (10), solid line for (11), dashed line for (13), and dashdot for

(12), + for (14). (1A)-(1.4) are for different number of grid points N.
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It is clear that the coarse grid operators derived from the homogenized forms (10)

and (11) are superior. The effect is more pronounced for large "7 when the eigenspace

corresponding to large eigenvalues of L_,h is essentially eliminated. For the practical low

7 case, a study of the impact of the choices of I/_ and I H is needed. In this paper we are

concentrating on the asymptotic behavior (large 7). Different I_ and I_ operators are

briefly discussed for the one-dimensional problem.

In Figure 2, we plot p as a function of the variable a, where LH(a ) comes from the

discretized operator --ariD ":D x + a(# -a)D_Dg ,,H r_Y nY v_h.0 + - - _ijL'+'-'-, w = 0.095 and e =

1

o.9

om

o.8

os

o4

o.s_- 0,2

Figure 2: p as a function of a. Here N = 64 and "/= 12. "*" denote p under the different choice of NorrnM

and Local Homogenized coarse grid operator, respectively.

From Figure 2, we get further evidence of the importance of using the correct homoge-

nized operator. Techniques based on one-dimensional analysis does not contain the mixed

derivative term [1].

In order to isolate the influence of the coarse grid approximation we have kept the

smoothing operator fixed. It obviously also affects the performance. If we use Gauss Seidel

iteration method in (9), the convergence rate can be improved. In Table 1, we test the

same coefficient a_(x-y) = 2.1 +2sin(27r(x-y)/e). Taking N = 128, e = v/2h, we compare

the convergence rate by choosing damped Jacobi iteration and Gauss Seidel iteration.

5 6 7 8 9 10 11 12

Jacobi .5929 .5519 .5173 .4863 .4579 .4349 .4140 .3950

G-S .4545 .4221 .3922 .3703 ....13491 .3304 .3158 .3008

Table 1: Spectral radius, two dimensional case
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ONE DIMENSIONAL PROBLEMS

The one dimensional equation is useful as a model for which a more complete mathe-

matical analysis is possible.

Consider the following one-dimensional elliptic boundary value problem with a periodic

oscillatory coefficient, : _ _ ....

d _ du_
_a (x)-dT = 1, 0 < x < 1, _(0) = _(1)=0, (16)

where a_(x) = a(_) and satisfies the same assumption as above. As ¢ _ 0, u_ converges

strongly in Loo to the solution u of the homogenized equation,

d2u

- _dx_ 1, 0 < x < 1, _ ._(1/a9 -1. (17)

Subject to the boundary conditions ¢(0) = ¢(1) = 0.

Numerical Algorithm

Let the difference approximation of (16) be of the form:

_a_(x._l)(uh _uh)+aqx " _(u h h3-1- 7 _ j+l x 3-7J_ 3- t/J -1) = 1,

In matrix form, (18) can be written as
=

where

j = I,..-,N- 1 (18)

L_,hu h= l, u h = (uhl ...,uhN_,)T

i

L_,h = -_Tridiag[-ai_l,ai_l + ai,ai+l](N_l)×(N_ 0 (19)

with aj=a_(xj-_).

We first consider a two-grid method by applying standard restriction, standard inter-

polation operators and Jacobi smoothing iteration.

The coarse grid operator LH will be one of the following:

Homogenized operator:

A veraged operator:

m(1/a_) -1

L H -- H_ Tridiag[-1,2,-1](___)x@__) (20)

LH - m(a_)Tridiag[-1,2,-1](q_l)×(____) (21)
H 2

182



Sampling operator: L¢, H has the exact form as L_,h, but only every second aj value is used,

L H = L¢, H (22)

Variational operator:

L. = (23)

Convergence Theory

The theorem below on the convergence rate is too pessimistic in the number of smooth-

ing iterations necessary. However, the analysis still gives insight into the convergence

process and the role of homogenization. With LH replaced by averaging (21) the same

analysis results in 7 = O(h-2) which means that multigird does not improve the rate of

convergence over just using Jacobi iterations. This follows from the effect of the oscillations

on the lower eigenmodes. It should also be noticed that in the case (ii), the solution of L_, h

is much closer to those of LH, see [11].

Theorem 1 Let M be defined as in (8), with L H defined by (11). There exists a constant

C such that,

p(M) < Po < 1,

when either one of the following conditions is satisfied:

(i) _/ >_ Ch-l-a/rlnh

(ii) the ratio of h to e belongs to the set of Diaphantine number, and 7 >- Ch-l-1/Slnh.

For details of the proof, see [10]. An outline is as follows. Separate the complete eigenspace

of L¢,h into two orthogonal subspaces, the space of low eigenmodes and that of high eigen-

modes. After several Jacobi smoothing iterations in the fine grid level, the high eigenmodes

of the error are reduced, and only the low eigenmodes are left. Combining eigenvalue analy-

sis with homogenization theory [11], one may realize that the low eigenmodes of the original

discrete operator are close to those of the corresponding homogenized operator. We then

approximate them by the corresponding homogenized eigenmodes and correct these in the

coarse grid level.
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Numerical Results

In Figure 3.1 and Figure 3.2, a_(x) = 2.1 + 2 sin(27rx/e). We plot the analogous graph

to Figure 1. Here e = v/2h and _ in (9) is 0.1829. In Figure 3.3 and Figure 3.4, a_(x) =

2.1 + 2sin(2_rx/c + _/4). Here e = 4h and w = 0.1585.
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Figure 3: p as a function of_¢. Dotted line is for (20), solid line for (21), dashed line for (22), and dashdot for

(23). (3.1)-(3.4) are for different number grid points N.

In Figure 4, with the assumptions in Figure 3.3-3.4, we plot a_(x) and the approximation

of (18) under the choices of coemcients in Figure 3.
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In Figure 5, we plot p as a function of the variable a, where L H = aA H. In (5.1),

a*(z) = 2.1 + 2sin(2_z/e), w = 0.1829 and e = v_h; In (5.2), a_(x) = 20.1 if x/e -Ix/el e
(0.7,0.9); otherwise, O.1, w = 0.0373 and e = 4h.
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Figure 5: p as a function of c_. The homogenized value ah = m(1/ae) -1 and the arithmetic value av = m(a e)

are given. Here "y = 10 and N = 256.

In Figure 6, we present the convergence u_ + u, as e + 0 by giving the numerical solutions

of (16) and (17). Recall that our goal is to solve the oscillatory problem and to use the

homogenized operator only for the coarse grids.
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Figure 6: Solid lines are the approximations for (18), dashed lines are the solutions for (17), respectively,

when e = 0.2 in (6.1) _nd _ = 0.1 in (6.2). Here N = 500.
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HYPERBOLIC PROBLEMS

Time evolution of a hyperbolic differential equation canbeusedfor steadystate computa-
tions. This is common in computational fluid dynamics, [6]. In multigrid this meansthat
hyperbolic timestepping replacesthe smoothing step. There are fundamental differences
with standard multigrid for elliptic problemsbut someof our earlier discussionscarry over

to the hyperbolic case. The dissipative mechanisms for hyperbolic problems are mainly the

boundary conditions. Consider using the model problem,

02u, 0 , Ou,
Ot 2 Ox a (z)--_x = f(z), 0 < x_< 1 (24)

as the smoothing equation in multigrid for the numerical solution of (16), subject to the

boundary conditions
0_t(1)

ut(o) = o, Ox -0. (25)

The equation (24) must have boundary conditions which are dissipative but reduce to (25)

at steady state, see [5],

u_(O,t) = O, Ou_(1,t) r-----Ou_(1,t)
Ot + _/a_(z) -_x - O. (26)

The initial condition should support the transport of the residual to the dissipative

boundary x = 1,

u_(x,_)= u0(x) given,

Note that the initial condition approximates the transport equation ut + v/auz = 0. The

difference approximation of (24) needs a low level of numerical dissipation.

The homogenization theory of [2] is also valid for equation of the type (24). A numerical

indication is seen in Figure 7.

The positive effect of muItigrid on the convergence rate does not carry ever to problems

for which the steady state is hyperbolic or contains hyperbolic components. If,

Out Out Ou_

0_ + %7 + Z-b7 =°

is used for the equation,

U_

Otl t O_l e

+ _-N:v= o,

is 1 -periodic in
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The coarse grid operator must resolve all scales of a _ to required accuracy in order to

produce multigrid speed up. More on this phenomena will be reported elsewhere.

Numerical Results

In Figure 7, take 50 smoothing steps. Coefficient a(x/e) is the same as in Figure 1.
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Figure 7: (7.1) Solutions: Solid line is the solution of steady state; Dashed line for homogenized solution;

Dashed dot line for average solution. (7.2) Residue as function of two level multigrid cycles. (7.3) Approximate

solutions after each two level cycle. (7.4) Approximate solutions for time evolution equation.

CONCLUSION

Elliptic equations and some hyperbolic equations with highly oscillatory coefficients

have been studied. We have shown that the homogenized form of the equations are very

useful in the design of coarse grid operators for multigrid.
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The evidence is from a sequence of numerical examples with strongly variable coefficients

and to some extent from theoretical analysis. The result is clear in the asymptotic regime

of many smoothing iterations.

The impact on the coarse grid operator from the numerical truncation error and the

interpolation operator needs to be asessed in order to improve the performance in the

regime of very few smoothing iterations per cycle.
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